qmk_firmware/quantum/split_common/transactions.c
Dasky f5b495e06e
Move pointing device driver code (#24445)
Co-authored-by: Drashna Jaelre <drashna@live.com>
2024-10-25 18:11:51 +01:00

1079 lines
44 KiB
C

/* Copyright 2021 QMK
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <string.h>
#include <stddef.h>
#include "crc.h"
#include "debug.h"
#include "matrix.h"
#include "host.h"
#include "action_util.h"
#include "sync_timer.h"
#include "wait.h"
#include "transactions.h"
#include "transport.h"
#include "transaction_id_define.h"
#include "split_util.h"
#include "synchronization_util.h"
#ifdef BACKLIGHT_ENABLE
# include "backlight.h"
#endif
#ifdef RGBLIGHT_ENABLE
# include "rgblight.h"
#endif
#ifdef LED_MATRIX_ENABLE
# include "led_matrix.h"
#endif
#ifdef RGB_MATRIX_ENABLE
# include "rgb_matrix.h"
#endif
#ifdef OLED_ENABLE
# include "oled_driver.h"
#endif
#ifdef ST7565_ENABLE
# include "st7565.h"
#endif
#ifdef ENCODER_ENABLE
# include "encoder.h"
#endif
#ifdef HAPTIC_ENABLE
# include "haptic.h"
#endif
#ifdef POINTING_DEVICE_ENABLE
# include "pointing_device.h"
#endif
#ifdef OS_DETECTION_ENABLE
# include "os_detection.h"
#endif
#ifdef WPM_ENABLE
# include "wpm.h"
#endif
#define SYNC_TIMER_OFFSET 2
#ifndef FORCED_SYNC_THROTTLE_MS
# define FORCED_SYNC_THROTTLE_MS 100
#endif // FORCED_SYNC_THROTTLE_MS
#define sizeof_member(type, member) sizeof(((type *)NULL)->member)
#define trans_initiator2target_initializer_cb(member, cb) \
{ sizeof_member(split_shared_memory_t, member), offsetof(split_shared_memory_t, member), 0, 0, cb }
#define trans_initiator2target_initializer(member) trans_initiator2target_initializer_cb(member, NULL)
#define trans_target2initiator_initializer_cb(member, cb) \
{ 0, 0, sizeof_member(split_shared_memory_t, member), offsetof(split_shared_memory_t, member), cb }
#define trans_target2initiator_initializer(member) trans_target2initiator_initializer_cb(member, NULL)
#define trans_initiator2target_cb(cb) \
{ 0, 0, 0, 0, cb }
#define transport_write(id, data, length) transport_execute_transaction(id, data, length, NULL, 0)
#define transport_read(id, data, length) transport_execute_transaction(id, NULL, 0, data, length)
#define transport_exec(id) transport_execute_transaction(id, NULL, 0, NULL, 0)
#if defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
// Forward-declare the RPC callback handlers
void slave_rpc_info_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer);
void slave_rpc_exec_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer);
#endif // defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
////////////////////////////////////////////////////
// Helpers
static bool transaction_handler_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[], const char *prefix, bool (*handler)(matrix_row_t master_matrix[], matrix_row_t slave_matrix[])) {
int num_retries = is_transport_connected() ? 10 : 1;
for (int iter = 1; iter <= num_retries; ++iter) {
if (iter > 1) {
for (int i = 0; i < iter * iter; ++i) {
wait_us(10);
}
}
bool this_okay = true;
this_okay = handler(master_matrix, slave_matrix);
if (this_okay) return true;
}
dprintf("Failed to execute %s\n", prefix);
return false;
}
#define TRANSACTION_HANDLER_MASTER(prefix) \
do { \
if (!transaction_handler_master(master_matrix, slave_matrix, #prefix, &prefix##_handlers_master)) return false; \
} while (0)
/**
* @brief Constructs a transaction handler that doesn't acquire a lock to the
* split shared memory. Therefore the locking and unlocking has to be done
* manually inside the handler. Use this macro only if the handler is
* non-deterministic in runtime and thus needs a manual lock unlock
* implementation to hold the lock for the shortest possible time.
*/
#define TRANSACTION_HANDLER_SLAVE(prefix) \
do { \
prefix##_handlers_slave(master_matrix, slave_matrix); \
} while (0)
/**
* @brief Constructs a transaction handler that automatically acquires a lock to
* safely access the split shared memory and releases the lock again after
* processing the handler. Use this macro if the handler is fast and
* deterministic in runtime and thus holds the lock only for a very short time.
* If not fallback to manually locking and unlocking inside the handler.
*/
#define TRANSACTION_HANDLER_SLAVE_AUTOLOCK(prefix) \
do { \
split_shared_memory_lock(); \
prefix##_handlers_slave(master_matrix, slave_matrix); \
split_shared_memory_unlock(); \
} while (0)
inline static bool read_if_checksum_mismatch(int8_t trans_id_checksum, int8_t trans_id_retrieve, uint32_t *last_update, void *destination, const void *equiv_shmem, size_t length) {
uint8_t curr_checksum;
bool okay = transport_read(trans_id_checksum, &curr_checksum, sizeof(curr_checksum));
if (okay && (timer_elapsed32(*last_update) >= FORCED_SYNC_THROTTLE_MS || curr_checksum != crc8(equiv_shmem, length))) {
okay &= transport_read(trans_id_retrieve, destination, length);
okay &= curr_checksum == crc8(equiv_shmem, length);
if (okay) {
*last_update = timer_read32();
}
} else {
memcpy(destination, equiv_shmem, length);
}
return okay;
}
inline static bool send_if_condition(int8_t trans_id, uint32_t *last_update, bool condition, void *source, size_t length) {
bool okay = true;
if (timer_elapsed32(*last_update) >= FORCED_SYNC_THROTTLE_MS || condition) {
okay &= transport_write(trans_id, source, length);
if (okay) {
*last_update = timer_read32();
}
}
return okay;
}
inline static bool send_if_data_mismatch(int8_t trans_id, uint32_t *last_update, void *source, const void *equiv_shmem, size_t length) {
// Just run a memcmp to compare the source and equivalent shmem location
return send_if_condition(trans_id, last_update, (memcmp(source, equiv_shmem, length) != 0), source, length);
}
////////////////////////////////////////////////////
// Slave matrix
static bool slave_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_update = 0;
static matrix_row_t last_matrix[(MATRIX_ROWS) / 2] = {0}; // last successfully-read matrix, so we can replicate if there are checksum errors
matrix_row_t temp_matrix[(MATRIX_ROWS) / 2]; // holding area while we test whether or not checksum is correct
bool okay = read_if_checksum_mismatch(GET_SLAVE_MATRIX_CHECKSUM, GET_SLAVE_MATRIX_DATA, &last_update, temp_matrix, split_shmem->smatrix.matrix, sizeof(split_shmem->smatrix.matrix));
if (okay) {
// Checksum matches the received data, save as the last matrix state
memcpy(last_matrix, temp_matrix, sizeof(temp_matrix));
}
// Copy out the last-known-good matrix state to the slave matrix
memcpy(slave_matrix, last_matrix, sizeof(last_matrix));
return okay;
}
static void slave_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
memcpy(split_shmem->smatrix.matrix, slave_matrix, sizeof(split_shmem->smatrix.matrix));
split_shmem->smatrix.checksum = crc8(split_shmem->smatrix.matrix, sizeof(split_shmem->smatrix.matrix));
}
// clang-format off
#define TRANSACTIONS_SLAVE_MATRIX_MASTER() TRANSACTION_HANDLER_MASTER(slave_matrix)
#define TRANSACTIONS_SLAVE_MATRIX_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(slave_matrix)
#define TRANSACTIONS_SLAVE_MATRIX_REGISTRATIONS \
[GET_SLAVE_MATRIX_CHECKSUM] = trans_target2initiator_initializer(smatrix.checksum), \
[GET_SLAVE_MATRIX_DATA] = trans_target2initiator_initializer(smatrix.matrix),
// clang-format on
////////////////////////////////////////////////////
// Master matrix
#ifdef SPLIT_TRANSPORT_MIRROR
static bool master_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_update = 0;
return send_if_data_mismatch(PUT_MASTER_MATRIX, &last_update, master_matrix, split_shmem->mmatrix.matrix, sizeof(split_shmem->mmatrix.matrix));
}
static void master_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
// Always copy to the master matrix
memcpy(master_matrix, split_shmem->mmatrix.matrix, sizeof(split_shmem->mmatrix.matrix));
}
# define TRANSACTIONS_MASTER_MATRIX_MASTER() TRANSACTION_HANDLER_MASTER(master_matrix)
# define TRANSACTIONS_MASTER_MATRIX_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(master_matrix)
# define TRANSACTIONS_MASTER_MATRIX_REGISTRATIONS [PUT_MASTER_MATRIX] = trans_initiator2target_initializer(mmatrix.matrix),
#else // SPLIT_TRANSPORT_MIRROR
# define TRANSACTIONS_MASTER_MATRIX_MASTER()
# define TRANSACTIONS_MASTER_MATRIX_SLAVE()
# define TRANSACTIONS_MASTER_MATRIX_REGISTRATIONS
#endif // SPLIT_TRANSPORT_MIRROR
////////////////////////////////////////////////////
// Encoders
#ifdef ENCODER_ENABLE
static bool encoder_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_update = 0;
static uint8_t last_checksum = 0;
encoder_events_t temp_events;
bool okay = read_if_checksum_mismatch(GET_ENCODERS_CHECKSUM, GET_ENCODERS_DATA, &last_update, &temp_events, &split_shmem->encoders.events, sizeof(temp_events));
if (okay) {
if (last_checksum != split_shmem->encoders.checksum) {
bool actioned = false;
uint8_t index;
bool clockwise;
while (okay && encoder_dequeue_event_advanced(&split_shmem->encoders.events, &index, &clockwise)) {
okay &= encoder_queue_event(index, clockwise);
actioned = true;
}
if (actioned) {
okay &= transport_exec(CMD_ENCODER_DRAIN);
}
last_checksum = split_shmem->encoders.checksum;
}
}
return okay;
}
static void encoder_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
// Always prepare the encoder state for read.
encoder_retrieve_events(&split_shmem->encoders.events);
// Now update the checksum given that the encoders has been written to
split_shmem->encoders.checksum = crc8(&split_shmem->encoders.events, sizeof(split_shmem->encoders.events));
}
static void encoder_handlers_slave_drain(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) {
encoder_signal_queue_drain();
}
// clang-format off
# define TRANSACTIONS_ENCODERS_MASTER() TRANSACTION_HANDLER_MASTER(encoder)
# define TRANSACTIONS_ENCODERS_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(encoder)
# define TRANSACTIONS_ENCODERS_REGISTRATIONS \
[GET_ENCODERS_CHECKSUM] = trans_target2initiator_initializer(encoders.checksum), \
[GET_ENCODERS_DATA] = trans_target2initiator_initializer(encoders.events), \
[CMD_ENCODER_DRAIN] = trans_initiator2target_cb(encoder_handlers_slave_drain),
// clang-format on
#else // ENCODER_ENABLE
# define TRANSACTIONS_ENCODERS_MASTER()
# define TRANSACTIONS_ENCODERS_SLAVE()
# define TRANSACTIONS_ENCODERS_REGISTRATIONS
#endif // ENCODER_ENABLE
////////////////////////////////////////////////////
// Sync timer
#ifndef DISABLE_SYNC_TIMER
static bool sync_timer_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_update = 0;
bool okay = true;
if (timer_elapsed32(last_update) >= FORCED_SYNC_THROTTLE_MS) {
uint32_t sync_timer = sync_timer_read32() + SYNC_TIMER_OFFSET;
okay &= transport_write(PUT_SYNC_TIMER, &sync_timer, sizeof(sync_timer));
if (okay) {
last_update = timer_read32();
}
}
return okay;
}
static void sync_timer_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_sync_timer = 0;
if (last_sync_timer != split_shmem->sync_timer) {
last_sync_timer = split_shmem->sync_timer;
sync_timer_update(last_sync_timer);
}
}
# define TRANSACTIONS_SYNC_TIMER_MASTER() TRANSACTION_HANDLER_MASTER(sync_timer)
# define TRANSACTIONS_SYNC_TIMER_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(sync_timer)
# define TRANSACTIONS_SYNC_TIMER_REGISTRATIONS [PUT_SYNC_TIMER] = trans_initiator2target_initializer(sync_timer),
#else // DISABLE_SYNC_TIMER
# define TRANSACTIONS_SYNC_TIMER_MASTER()
# define TRANSACTIONS_SYNC_TIMER_SLAVE()
# define TRANSACTIONS_SYNC_TIMER_REGISTRATIONS
#endif // DISABLE_SYNC_TIMER
////////////////////////////////////////////////////
// Layer state
#if !defined(NO_ACTION_LAYER) && defined(SPLIT_LAYER_STATE_ENABLE)
static bool layer_state_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_layer_state_update = 0;
static uint32_t last_default_layer_state_update = 0;
bool okay = send_if_condition(PUT_LAYER_STATE, &last_layer_state_update, (layer_state != split_shmem->layers.layer_state), &layer_state, sizeof(layer_state));
if (okay) {
okay &= send_if_condition(PUT_DEFAULT_LAYER_STATE, &last_default_layer_state_update, (default_layer_state != split_shmem->layers.default_layer_state), &default_layer_state, sizeof(default_layer_state));
}
return okay;
}
static void layer_state_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
layer_state = split_shmem->layers.layer_state;
default_layer_state = split_shmem->layers.default_layer_state;
}
// clang-format off
# define TRANSACTIONS_LAYER_STATE_MASTER() TRANSACTION_HANDLER_MASTER(layer_state)
# define TRANSACTIONS_LAYER_STATE_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(layer_state)
# define TRANSACTIONS_LAYER_STATE_REGISTRATIONS \
[PUT_LAYER_STATE] = trans_initiator2target_initializer(layers.layer_state), \
[PUT_DEFAULT_LAYER_STATE] = trans_initiator2target_initializer(layers.default_layer_state),
// clang-format on
#else // !defined(NO_ACTION_LAYER) && defined(SPLIT_LAYER_STATE_ENABLE)
# define TRANSACTIONS_LAYER_STATE_MASTER()
# define TRANSACTIONS_LAYER_STATE_SLAVE()
# define TRANSACTIONS_LAYER_STATE_REGISTRATIONS
#endif // !defined(NO_ACTION_LAYER) && defined(SPLIT_LAYER_STATE_ENABLE)
////////////////////////////////////////////////////
// LED state
#ifdef SPLIT_LED_STATE_ENABLE
static bool led_state_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_update = 0;
uint8_t led_state = host_keyboard_leds();
return send_if_data_mismatch(PUT_LED_STATE, &last_update, &led_state, &split_shmem->led_state, sizeof(led_state));
}
static void led_state_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
void set_split_host_keyboard_leds(uint8_t led_state);
set_split_host_keyboard_leds(split_shmem->led_state);
}
# define TRANSACTIONS_LED_STATE_MASTER() TRANSACTION_HANDLER_MASTER(led_state)
# define TRANSACTIONS_LED_STATE_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(led_state)
# define TRANSACTIONS_LED_STATE_REGISTRATIONS [PUT_LED_STATE] = trans_initiator2target_initializer(led_state),
#else // SPLIT_LED_STATE_ENABLE
# define TRANSACTIONS_LED_STATE_MASTER()
# define TRANSACTIONS_LED_STATE_SLAVE()
# define TRANSACTIONS_LED_STATE_REGISTRATIONS
#endif // SPLIT_LED_STATE_ENABLE
////////////////////////////////////////////////////
// Mods
#ifdef SPLIT_MODS_ENABLE
static bool mods_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_update = 0;
bool mods_need_sync = timer_elapsed32(last_update) >= FORCED_SYNC_THROTTLE_MS;
split_mods_sync_t new_mods;
new_mods.real_mods = get_mods();
if (!mods_need_sync && new_mods.real_mods != split_shmem->mods.real_mods) {
mods_need_sync = true;
}
new_mods.weak_mods = get_weak_mods();
if (!mods_need_sync && new_mods.weak_mods != split_shmem->mods.weak_mods) {
mods_need_sync = true;
}
# ifndef NO_ACTION_ONESHOT
new_mods.oneshot_mods = get_oneshot_mods();
if (!mods_need_sync && new_mods.oneshot_mods != split_shmem->mods.oneshot_mods) {
mods_need_sync = true;
}
new_mods.oneshot_locked_mods = get_oneshot_locked_mods();
if (!mods_need_sync && new_mods.oneshot_locked_mods != split_shmem->mods.oneshot_locked_mods) {
mods_need_sync = true;
}
# endif // NO_ACTION_ONESHOT
bool okay = true;
if (mods_need_sync) {
okay &= transport_write(PUT_MODS, &new_mods, sizeof(new_mods));
if (okay) {
last_update = timer_read32();
}
}
return okay;
}
static void mods_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
split_shared_memory_lock();
split_mods_sync_t mods;
memcpy(&mods, &split_shmem->mods, sizeof(split_mods_sync_t));
split_shared_memory_unlock();
set_mods(mods.real_mods);
set_weak_mods(mods.weak_mods);
# ifndef NO_ACTION_ONESHOT
set_oneshot_mods(mods.oneshot_mods);
set_oneshot_locked_mods(mods.oneshot_locked_mods);
# endif
}
# define TRANSACTIONS_MODS_MASTER() TRANSACTION_HANDLER_MASTER(mods)
# define TRANSACTIONS_MODS_SLAVE() TRANSACTION_HANDLER_SLAVE(mods)
# define TRANSACTIONS_MODS_REGISTRATIONS [PUT_MODS] = trans_initiator2target_initializer(mods),
#else // SPLIT_MODS_ENABLE
# define TRANSACTIONS_MODS_MASTER()
# define TRANSACTIONS_MODS_SLAVE()
# define TRANSACTIONS_MODS_REGISTRATIONS
#endif // SPLIT_MODS_ENABLE
////////////////////////////////////////////////////
// Backlight
#ifdef BACKLIGHT_ENABLE
static bool backlight_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_update = 0;
uint8_t level = is_backlight_enabled() ? get_backlight_level() : 0;
return send_if_condition(PUT_BACKLIGHT, &last_update, (level != split_shmem->backlight_level), &level, sizeof(level));
}
static void backlight_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
split_shared_memory_lock();
uint8_t backlight_level = split_shmem->backlight_level;
split_shared_memory_unlock();
backlight_level_noeeprom(backlight_level);
}
# define TRANSACTIONS_BACKLIGHT_MASTER() TRANSACTION_HANDLER_MASTER(backlight)
# define TRANSACTIONS_BACKLIGHT_SLAVE() TRANSACTION_HANDLER_SLAVE(backlight)
# define TRANSACTIONS_BACKLIGHT_REGISTRATIONS [PUT_BACKLIGHT] = trans_initiator2target_initializer(backlight_level),
#else // BACKLIGHT_ENABLE
# define TRANSACTIONS_BACKLIGHT_MASTER()
# define TRANSACTIONS_BACKLIGHT_SLAVE()
# define TRANSACTIONS_BACKLIGHT_REGISTRATIONS
#endif // BACKLIGHT_ENABLE
////////////////////////////////////////////////////
// RGBLIGHT
#if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
static bool rgblight_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_update = 0;
rgblight_syncinfo_t rgblight_sync;
rgblight_get_syncinfo(&rgblight_sync);
if (send_if_condition(PUT_RGBLIGHT, &last_update, (rgblight_sync.status.change_flags != 0), &rgblight_sync, sizeof(rgblight_sync))) {
rgblight_clear_change_flags();
} else {
return false;
}
return true;
}
static void rgblight_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
split_shared_memory_lock();
// Update the RGB with the new data
rgblight_syncinfo_t rgblight_sync;
memcpy(&rgblight_sync, &split_shmem->rgblight_sync, sizeof(rgblight_syncinfo_t));
split_shmem->rgblight_sync.status.change_flags = 0;
split_shared_memory_unlock();
if (rgblight_sync.status.change_flags != 0) {
rgblight_update_sync(&rgblight_sync, false);
}
}
# define TRANSACTIONS_RGBLIGHT_MASTER() TRANSACTION_HANDLER_MASTER(rgblight)
# define TRANSACTIONS_RGBLIGHT_SLAVE() TRANSACTION_HANDLER_SLAVE(rgblight)
# define TRANSACTIONS_RGBLIGHT_REGISTRATIONS [PUT_RGBLIGHT] = trans_initiator2target_initializer(rgblight_sync),
#else // defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
# define TRANSACTIONS_RGBLIGHT_MASTER()
# define TRANSACTIONS_RGBLIGHT_SLAVE()
# define TRANSACTIONS_RGBLIGHT_REGISTRATIONS
#endif // defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
////////////////////////////////////////////////////
// LED Matrix
#if defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT)
static bool led_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_update = 0;
led_matrix_sync_t led_matrix_sync;
memcpy(&led_matrix_sync.led_matrix, &led_matrix_eeconfig, sizeof(led_eeconfig_t));
led_matrix_sync.led_suspend_state = led_matrix_get_suspend_state();
return send_if_data_mismatch(PUT_LED_MATRIX, &last_update, &led_matrix_sync, &split_shmem->led_matrix_sync, sizeof(led_matrix_sync));
}
static void led_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
split_shared_memory_lock();
memcpy(&led_matrix_eeconfig, &split_shmem->led_matrix_sync.led_matrix, sizeof(led_eeconfig_t));
bool led_suspend_state = split_shmem->led_matrix_sync.led_suspend_state;
split_shared_memory_unlock();
led_matrix_set_suspend_state(led_suspend_state);
}
# define TRANSACTIONS_LED_MATRIX_MASTER() TRANSACTION_HANDLER_MASTER(led_matrix)
# define TRANSACTIONS_LED_MATRIX_SLAVE() TRANSACTION_HANDLER_SLAVE(led_matrix)
# define TRANSACTIONS_LED_MATRIX_REGISTRATIONS [PUT_LED_MATRIX] = trans_initiator2target_initializer(led_matrix_sync),
#else // defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT)
# define TRANSACTIONS_LED_MATRIX_MASTER()
# define TRANSACTIONS_LED_MATRIX_SLAVE()
# define TRANSACTIONS_LED_MATRIX_REGISTRATIONS
#endif // defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT)
////////////////////////////////////////////////////
// RGB Matrix
#if defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_SPLIT)
static bool rgb_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_update = 0;
rgb_matrix_sync_t rgb_matrix_sync;
memcpy(&rgb_matrix_sync.rgb_matrix, &rgb_matrix_config, sizeof(rgb_config_t));
rgb_matrix_sync.rgb_suspend_state = rgb_matrix_get_suspend_state();
return send_if_data_mismatch(PUT_RGB_MATRIX, &last_update, &rgb_matrix_sync, &split_shmem->rgb_matrix_sync, sizeof(rgb_matrix_sync));
}
static void rgb_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
split_shared_memory_lock();
memcpy(&rgb_matrix_config, &split_shmem->rgb_matrix_sync.rgb_matrix, sizeof(rgb_config_t));
bool rgb_suspend_state = split_shmem->rgb_matrix_sync.rgb_suspend_state;
split_shared_memory_unlock();
rgb_matrix_set_suspend_state(rgb_suspend_state);
}
# define TRANSACTIONS_RGB_MATRIX_MASTER() TRANSACTION_HANDLER_MASTER(rgb_matrix)
# define TRANSACTIONS_RGB_MATRIX_SLAVE() TRANSACTION_HANDLER_SLAVE(rgb_matrix)
# define TRANSACTIONS_RGB_MATRIX_REGISTRATIONS [PUT_RGB_MATRIX] = trans_initiator2target_initializer(rgb_matrix_sync),
#else // defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_SPLIT)
# define TRANSACTIONS_RGB_MATRIX_MASTER()
# define TRANSACTIONS_RGB_MATRIX_SLAVE()
# define TRANSACTIONS_RGB_MATRIX_REGISTRATIONS
#endif // defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_SPLIT)
////////////////////////////////////////////////////
// WPM
#if defined(WPM_ENABLE) && defined(SPLIT_WPM_ENABLE)
static bool wpm_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_update = 0;
uint8_t current_wpm = get_current_wpm();
return send_if_condition(PUT_WPM, &last_update, (current_wpm != split_shmem->current_wpm), &current_wpm, sizeof(current_wpm));
}
static void wpm_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
set_current_wpm(split_shmem->current_wpm);
}
# define TRANSACTIONS_WPM_MASTER() TRANSACTION_HANDLER_MASTER(wpm)
# define TRANSACTIONS_WPM_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(wpm)
# define TRANSACTIONS_WPM_REGISTRATIONS [PUT_WPM] = trans_initiator2target_initializer(current_wpm),
#else // defined(WPM_ENABLE) && defined(SPLIT_WPM_ENABLE)
# define TRANSACTIONS_WPM_MASTER()
# define TRANSACTIONS_WPM_SLAVE()
# define TRANSACTIONS_WPM_REGISTRATIONS
#endif // defined(WPM_ENABLE) && defined(SPLIT_WPM_ENABLE)
////////////////////////////////////////////////////
// OLED
#if defined(OLED_ENABLE) && defined(SPLIT_OLED_ENABLE)
static bool oled_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_update = 0;
bool current_oled_state = is_oled_on();
return send_if_condition(PUT_OLED, &last_update, (current_oled_state != split_shmem->current_oled_state), &current_oled_state, sizeof(current_oled_state));
}
static void oled_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
split_shared_memory_lock();
uint8_t current_oled_state = split_shmem->current_oled_state;
split_shared_memory_unlock();
if (current_oled_state) {
oled_on();
} else {
oled_off();
}
}
# define TRANSACTIONS_OLED_MASTER() TRANSACTION_HANDLER_MASTER(oled)
# define TRANSACTIONS_OLED_SLAVE() TRANSACTION_HANDLER_SLAVE(oled)
# define TRANSACTIONS_OLED_REGISTRATIONS [PUT_OLED] = trans_initiator2target_initializer(current_oled_state),
#else // defined(OLED_ENABLE) && defined(SPLIT_OLED_ENABLE)
# define TRANSACTIONS_OLED_MASTER()
# define TRANSACTIONS_OLED_SLAVE()
# define TRANSACTIONS_OLED_REGISTRATIONS
#endif // defined(OLED_ENABLE) && defined(SPLIT_OLED_ENABLE)
////////////////////////////////////////////////////
// ST7565
#if defined(ST7565_ENABLE) && defined(SPLIT_ST7565_ENABLE)
static bool st7565_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_update = 0;
bool current_st7565_state = st7565_is_on();
return send_if_condition(PUT_ST7565, &last_update, (current_st7565_state != split_shmem->current_st7565_state), &current_st7565_state, sizeof(current_st7565_state));
}
static void st7565_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
split_shared_memory_lock();
uint8_t current_st7565_state = split_shmem->current_st7565_state;
split_shared_memory_unlock();
if (current_st7565_state) {
st7565_on();
} else {
st7565_off();
}
}
# define TRANSACTIONS_ST7565_MASTER() TRANSACTION_HANDLER_MASTER(st7565)
# define TRANSACTIONS_ST7565_SLAVE() TRANSACTION_HANDLER_SLAVE(st7565)
# define TRANSACTIONS_ST7565_REGISTRATIONS [PUT_ST7565] = trans_initiator2target_initializer(current_st7565_state),
#else // defined(ST7565_ENABLE) && defined(SPLIT_ST7565_ENABLE)
# define TRANSACTIONS_ST7565_MASTER()
# define TRANSACTIONS_ST7565_SLAVE()
# define TRANSACTIONS_ST7565_REGISTRATIONS
#endif // defined(ST7565_ENABLE) && defined(SPLIT_ST7565_ENABLE)
////////////////////////////////////////////////////
// POINTING
#if defined(POINTING_DEVICE_ENABLE) && defined(SPLIT_POINTING_ENABLE)
static bool pointing_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
# if defined(POINTING_DEVICE_LEFT)
if (is_keyboard_left()) {
return true;
}
# elif defined(POINTING_DEVICE_RIGHT)
if (!is_keyboard_left()) {
return true;
}
# endif
static uint32_t last_update = 0;
static uint32_t last_cpi_update = 0;
static uint16_t last_cpi = 0;
report_mouse_t temp_state;
uint16_t temp_cpi;
bool okay = read_if_checksum_mismatch(GET_POINTING_CHECKSUM, GET_POINTING_DATA, &last_update, &temp_state, &split_shmem->pointing.report, sizeof(temp_state));
if (okay) pointing_device_set_shared_report(temp_state);
temp_cpi = pointing_device_get_shared_cpi();
if (temp_cpi) {
split_shmem->pointing.cpi = temp_cpi;
okay = send_if_condition(PUT_POINTING_CPI, &last_cpi_update, last_cpi != temp_cpi, &split_shmem->pointing.cpi, sizeof(split_shmem->pointing.cpi));
if (okay) {
last_cpi = temp_cpi;
}
}
return okay;
}
extern const pointing_device_driver_t *pointing_device_driver;
static void pointing_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
# if defined(POINTING_DEVICE_LEFT)
if (!is_keyboard_left()) {
return;
}
# elif defined(POINTING_DEVICE_RIGHT)
if (is_keyboard_left()) {
return;
}
# endif
# if (POINTING_DEVICE_TASK_THROTTLE_MS > 0)
static uint32_t last_exec = 0;
if (timer_elapsed32(last_exec) < POINTING_DEVICE_TASK_THROTTLE_MS) {
return;
}
last_exec = timer_read32();
# endif
uint16_t temp_cpi = !pointing_device_driver->get_cpi ? 0 : pointing_device_driver->get_cpi(); // check for NULL
split_shared_memory_lock();
split_slave_pointing_sync_t pointing;
memcpy(&pointing, &split_shmem->pointing, sizeof(split_slave_pointing_sync_t));
split_shared_memory_unlock();
if (pointing.cpi && pointing.cpi != temp_cpi && pointing_device_driver->set_cpi) {
pointing_device_driver->set_cpi(pointing.cpi);
}
pointing.report = pointing_device_driver->get_report((report_mouse_t){0});
// Now update the checksum given that the pointing has been written to
pointing.checksum = crc8(&pointing.report, sizeof(report_mouse_t));
split_shared_memory_lock();
memcpy(&split_shmem->pointing, &pointing, sizeof(split_slave_pointing_sync_t));
split_shared_memory_unlock();
}
# define TRANSACTIONS_POINTING_MASTER() TRANSACTION_HANDLER_MASTER(pointing)
# define TRANSACTIONS_POINTING_SLAVE() TRANSACTION_HANDLER_SLAVE(pointing)
# define TRANSACTIONS_POINTING_REGISTRATIONS [GET_POINTING_CHECKSUM] = trans_target2initiator_initializer(pointing.checksum), [GET_POINTING_DATA] = trans_target2initiator_initializer(pointing.report), [PUT_POINTING_CPI] = trans_initiator2target_initializer(pointing.cpi),
#else // defined(POINTING_DEVICE_ENABLE) && defined(SPLIT_POINTING_ENABLE)
# define TRANSACTIONS_POINTING_MASTER()
# define TRANSACTIONS_POINTING_SLAVE()
# define TRANSACTIONS_POINTING_REGISTRATIONS
#endif // defined(POINTING_DEVICE_ENABLE) && defined(SPLIT_POINTING_ENABLE)
////////////////////////////////////////////////////
// WATCHDOG
#if defined(SPLIT_WATCHDOG_ENABLE)
static bool watchdog_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
bool okay = true;
if (!split_watchdog_check()) {
okay = transport_write(PUT_WATCHDOG, &okay, sizeof(okay));
split_watchdog_update(okay);
}
return okay;
}
static void watchdog_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
split_watchdog_update(split_shmem->watchdog_pinged);
}
# define TRANSACTIONS_WATCHDOG_MASTER() TRANSACTION_HANDLER_MASTER(watchdog)
# define TRANSACTIONS_WATCHDOG_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(watchdog)
# define TRANSACTIONS_WATCHDOG_REGISTRATIONS [PUT_WATCHDOG] = trans_initiator2target_initializer(watchdog_pinged),
#else // defined(SPLIT_WATCHDOG_ENABLE)
# define TRANSACTIONS_WATCHDOG_MASTER()
# define TRANSACTIONS_WATCHDOG_SLAVE()
# define TRANSACTIONS_WATCHDOG_REGISTRATIONS
#endif // defined(SPLIT_WATCHDOG_ENABLE)
#if defined(HAPTIC_ENABLE) && defined(SPLIT_HAPTIC_ENABLE)
uint8_t split_haptic_play = 0xFF;
extern haptic_config_t haptic_config;
static bool haptic_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_update = 0;
split_slave_haptic_sync_t haptic_sync;
memcpy(&haptic_sync.haptic_config, &haptic_config, sizeof(haptic_config_t));
haptic_sync.haptic_play = split_haptic_play;
bool okay = send_if_data_mismatch(PUT_HAPTIC, &last_update, &haptic_sync, &split_shmem->haptic_sync, sizeof(haptic_sync));
split_haptic_play = 0xFF;
return okay;
}
static void haptic_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
memcpy(&haptic_config, &split_shmem->haptic_sync.haptic_config, sizeof(haptic_config_t));
if (split_shmem->haptic_sync.haptic_play != 0xFF) {
haptic_set_mode(split_shmem->haptic_sync.haptic_play);
haptic_play();
}
}
// clang-format off
# define TRANSACTIONS_HAPTIC_MASTER() TRANSACTION_HANDLER_MASTER(haptic)
# define TRANSACTIONS_HAPTIC_SLAVE() TRANSACTION_HANDLER_SLAVE(haptic)
# define TRANSACTIONS_HAPTIC_REGISTRATIONS [PUT_HAPTIC] = trans_initiator2target_initializer(haptic_sync),
// clang-format on
#else // defined(HAPTIC_ENABLE) && defined(SPLIT_HAPTIC_ENABLE)
# define TRANSACTIONS_HAPTIC_MASTER()
# define TRANSACTIONS_HAPTIC_SLAVE()
# define TRANSACTIONS_HAPTIC_REGISTRATIONS
#endif // defined(HAPTIC_ENABLE) && defined(SPLIT_HAPTIC_ENABLE)
#if defined(SPLIT_ACTIVITY_ENABLE)
static bool activity_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_update = 0;
split_slave_activity_sync_t activity_sync;
activity_sync.matrix_timestamp = last_matrix_activity_time();
activity_sync.encoder_timestamp = last_encoder_activity_time();
activity_sync.pointing_device_timestamp = last_pointing_device_activity_time();
return send_if_data_mismatch(PUT_ACTIVITY, &last_update, &activity_sync, &split_shmem->activity_sync, sizeof(activity_sync));
}
static void activity_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
set_activity_timestamps(split_shmem->activity_sync.matrix_timestamp, split_shmem->activity_sync.encoder_timestamp, split_shmem->activity_sync.pointing_device_timestamp);
}
// clang-format off
# define TRANSACTIONS_ACTIVITY_MASTER() TRANSACTION_HANDLER_MASTER(activity)
# define TRANSACTIONS_ACTIVITY_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(activity)
# define TRANSACTIONS_ACTIVITY_REGISTRATIONS [PUT_ACTIVITY] = trans_initiator2target_initializer(activity_sync),
// clang-format on
#else // defined(SPLIT_ACTIVITY_ENABLE)
# define TRANSACTIONS_ACTIVITY_MASTER()
# define TRANSACTIONS_ACTIVITY_SLAVE()
# define TRANSACTIONS_ACTIVITY_REGISTRATIONS
#endif // defined(SPLIT_ACTIVITY_ENABLE)
////////////////////////////////////////////////////
// Detected OS
#if defined(OS_DETECTION_ENABLE) && defined(SPLIT_DETECTED_OS_ENABLE)
static bool detected_os_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_detected_os_update = 0;
os_variant_t detected_os = detected_host_os();
bool okay = send_if_condition(PUT_DETECTED_OS, &last_detected_os_update, (detected_os != split_shmem->detected_os), &detected_os, sizeof(os_variant_t));
return okay;
}
static void detected_os_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
slave_update_detected_host_os(split_shmem->detected_os);
}
# define TRANSACTIONS_DETECTED_OS_MASTER() TRANSACTION_HANDLER_MASTER(detected_os)
# define TRANSACTIONS_DETECTED_OS_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(detected_os)
# define TRANSACTIONS_DETECTED_OS_REGISTRATIONS [PUT_DETECTED_OS] = trans_initiator2target_initializer(detected_os),
#else // defined(OS_DETECTION_ENABLE) && defined(SPLIT_DETECTED_OS_ENABLE)
# define TRANSACTIONS_DETECTED_OS_MASTER()
# define TRANSACTIONS_DETECTED_OS_SLAVE()
# define TRANSACTIONS_DETECTED_OS_REGISTRATIONS
#endif // defined(OS_DETECTION_ENABLE) && defined(SPLIT_DETECTED_OS_ENABLE)
////////////////////////////////////////////////////
split_transaction_desc_t split_transaction_table[NUM_TOTAL_TRANSACTIONS] = {
// Set defaults
[0 ...(NUM_TOTAL_TRANSACTIONS - 1)] = {0, 0, 0, 0, 0},
#ifdef USE_I2C
[I2C_EXECUTE_CALLBACK] = trans_initiator2target_initializer(transaction_id),
#endif // USE_I2C
// clang-format off
TRANSACTIONS_SLAVE_MATRIX_REGISTRATIONS
TRANSACTIONS_MASTER_MATRIX_REGISTRATIONS
TRANSACTIONS_ENCODERS_REGISTRATIONS
TRANSACTIONS_SYNC_TIMER_REGISTRATIONS
TRANSACTIONS_LAYER_STATE_REGISTRATIONS
TRANSACTIONS_LED_STATE_REGISTRATIONS
TRANSACTIONS_MODS_REGISTRATIONS
TRANSACTIONS_BACKLIGHT_REGISTRATIONS
TRANSACTIONS_RGBLIGHT_REGISTRATIONS
TRANSACTIONS_LED_MATRIX_REGISTRATIONS
TRANSACTIONS_RGB_MATRIX_REGISTRATIONS
TRANSACTIONS_WPM_REGISTRATIONS
TRANSACTIONS_OLED_REGISTRATIONS
TRANSACTIONS_ST7565_REGISTRATIONS
TRANSACTIONS_POINTING_REGISTRATIONS
TRANSACTIONS_WATCHDOG_REGISTRATIONS
TRANSACTIONS_HAPTIC_REGISTRATIONS
TRANSACTIONS_ACTIVITY_REGISTRATIONS
TRANSACTIONS_DETECTED_OS_REGISTRATIONS
// clang-format on
#if defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
[PUT_RPC_INFO] = trans_initiator2target_initializer_cb(rpc_info, slave_rpc_info_callback),
[PUT_RPC_REQ_DATA] = trans_initiator2target_initializer(rpc_m2s_buffer),
[EXECUTE_RPC] = trans_initiator2target_initializer_cb(rpc_info.payload.transaction_id, slave_rpc_exec_callback),
[GET_RPC_RESP_DATA] = trans_target2initiator_initializer(rpc_s2m_buffer),
#endif // defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
};
bool transactions_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
TRANSACTIONS_SLAVE_MATRIX_MASTER();
TRANSACTIONS_MASTER_MATRIX_MASTER();
TRANSACTIONS_ENCODERS_MASTER();
TRANSACTIONS_SYNC_TIMER_MASTER();
TRANSACTIONS_LAYER_STATE_MASTER();
TRANSACTIONS_LED_STATE_MASTER();
TRANSACTIONS_MODS_MASTER();
TRANSACTIONS_BACKLIGHT_MASTER();
TRANSACTIONS_RGBLIGHT_MASTER();
TRANSACTIONS_LED_MATRIX_MASTER();
TRANSACTIONS_RGB_MATRIX_MASTER();
TRANSACTIONS_WPM_MASTER();
TRANSACTIONS_OLED_MASTER();
TRANSACTIONS_ST7565_MASTER();
TRANSACTIONS_POINTING_MASTER();
TRANSACTIONS_WATCHDOG_MASTER();
TRANSACTIONS_HAPTIC_MASTER();
TRANSACTIONS_ACTIVITY_MASTER();
TRANSACTIONS_DETECTED_OS_MASTER();
return true;
}
void transactions_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
TRANSACTIONS_SLAVE_MATRIX_SLAVE();
TRANSACTIONS_MASTER_MATRIX_SLAVE();
TRANSACTIONS_ENCODERS_SLAVE();
TRANSACTIONS_SYNC_TIMER_SLAVE();
TRANSACTIONS_LAYER_STATE_SLAVE();
TRANSACTIONS_LED_STATE_SLAVE();
TRANSACTIONS_MODS_SLAVE();
TRANSACTIONS_BACKLIGHT_SLAVE();
TRANSACTIONS_RGBLIGHT_SLAVE();
TRANSACTIONS_LED_MATRIX_SLAVE();
TRANSACTIONS_RGB_MATRIX_SLAVE();
TRANSACTIONS_WPM_SLAVE();
TRANSACTIONS_OLED_SLAVE();
TRANSACTIONS_ST7565_SLAVE();
TRANSACTIONS_POINTING_SLAVE();
TRANSACTIONS_WATCHDOG_SLAVE();
TRANSACTIONS_HAPTIC_SLAVE();
TRANSACTIONS_ACTIVITY_SLAVE();
TRANSACTIONS_DETECTED_OS_SLAVE();
}
#if defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
void transaction_register_rpc(int8_t transaction_id, slave_callback_t callback) {
// Prevent invoking RPC on QMK core sync data
if (transaction_id <= GET_RPC_RESP_DATA) return;
// Set the callback
split_transaction_table[transaction_id].slave_callback = callback;
split_transaction_table[transaction_id].initiator2target_offset = offsetof(split_shared_memory_t, rpc_m2s_buffer);
split_transaction_table[transaction_id].target2initiator_offset = offsetof(split_shared_memory_t, rpc_s2m_buffer);
}
bool transaction_rpc_exec(int8_t transaction_id, uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) {
// Prevent transaction attempts while transport is disconnected
if (!is_transport_connected()) {
return false;
}
// Prevent invoking RPC on QMK core sync data
if (transaction_id <= GET_RPC_RESP_DATA) return false;
// Prevent sizing issues
if (initiator2target_buffer_size > RPC_M2S_BUFFER_SIZE) return false;
if (target2initiator_buffer_size > RPC_S2M_BUFFER_SIZE) return false;
// Prepare the metadata block
rpc_sync_info_t info = {.payload = {.transaction_id = transaction_id, .m2s_length = initiator2target_buffer_size, .s2m_length = target2initiator_buffer_size}};
info.checksum = crc8(&info.payload, sizeof(info.payload));
// Make sure the local side knows that we're not sending the full block of data
split_transaction_table[PUT_RPC_REQ_DATA].initiator2target_buffer_size = initiator2target_buffer_size;
split_transaction_table[GET_RPC_RESP_DATA].target2initiator_buffer_size = target2initiator_buffer_size;
// Run through the sequence:
// * set the transaction ID and lengths
// * send the request data
// * execute RPC callback
// * retrieve the response data
if (!transport_write(PUT_RPC_INFO, &info, sizeof(info))) {
return false;
}
if (!transport_write(PUT_RPC_REQ_DATA, initiator2target_buffer, initiator2target_buffer_size)) {
return false;
}
if (!transport_write(EXECUTE_RPC, &transaction_id, sizeof(transaction_id))) {
return false;
}
if (!transport_read(GET_RPC_RESP_DATA, target2initiator_buffer, target2initiator_buffer_size)) {
return false;
}
return true;
}
void slave_rpc_info_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) {
// The RPC info block contains the intended transaction ID, as well as the sizes for both inbound and outbound data.
// Ignore the args -- the `split_shmem` already has the info, we just need to act upon it.
// We must keep the `split_transaction_table` non-const, so that it is able to be modified at runtime.
split_transaction_table[PUT_RPC_REQ_DATA].initiator2target_buffer_size = split_shmem->rpc_info.payload.m2s_length;
split_transaction_table[GET_RPC_RESP_DATA].target2initiator_buffer_size = split_shmem->rpc_info.payload.s2m_length;
}
void slave_rpc_exec_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) {
// We can assume that the buffer lengths are correctly set, now, given that sequentially the rpc_info callback was already executed.
// Go through the rpc_info and execute _that_ transaction's callback, with the scratch buffers as inputs.
// As a safety precaution we check that the received payload matches its checksum first.
if (crc8(&split_shmem->rpc_info.payload, sizeof(split_shmem->rpc_info.payload)) != split_shmem->rpc_info.checksum) {
return;
}
int8_t transaction_id = split_shmem->rpc_info.payload.transaction_id;
if (transaction_id < NUM_TOTAL_TRANSACTIONS) {
split_transaction_desc_t *trans = &split_transaction_table[transaction_id];
if (trans->slave_callback) {
trans->slave_callback(split_shmem->rpc_info.payload.m2s_length, split_shmem->rpc_m2s_buffer, split_shmem->rpc_info.payload.s2m_length, split_shmem->rpc_s2m_buffer);
}
}
}
#endif // defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)